— Flutter App Implementation
Guidelines for E2E Testing

Version: July 31, 2023

(%) MagicPod SEESEEEES

—— Table of Contents

1. Introduction
1.1. Scope of this Guide
1.2. Versions Validated by this Guide

2. Issues with E2E Test Automation for Flutter Apps

2.1. Multiple Widgets are Recognized as a Single Block of UI Element
2.2. UI Elements Not Recognized at All

3. SOIUI OIS

3.1. Upgrade Flutter to version 3.3.0 or later
3.2. Review the Implementation of UI Elements in the App
3.2.1. Isolate Widgets as SemanticsNode for Desired Testing Units
3.2.2. Properly Setting the Z-order of a Stack Widget

4. Implementation Tutorial
4.1. Upgrade Flutter
4.2. List Ul Elements that Aren't Recognized Properly

4.3. App Code Correction

5. Impact on Accessib"ity Information -

—— 1. Introduction

This guide is an application implementation guide for enabling E2E testing of
iOS and Android apps created using Flutter.

1-1. Scope of this Guide

The methods introduced in this guide are applicable to Appium and all E2E
automated testing tools that internally utilize Appium.

1-2. Versions Validated by this Guide

The following versions of libraries and tools were used to validate the content
of this guide.

e Flutter version 3.3.0
e Appium version 2.0.0-beta.71

For E2E automated testing tools that internally utilize Appium, MagicPod
(https://magicpod.com/en/) is used for behavior verification.

—— 2. Issues with E2E Test Automation for
Flutter Apps

A frequent issue when automating E2E testing for Flutter apps using Appium
is the incorrect recognition of Ul elements within the Flutter app. This
chapter provides a detailed explanation of this problem.

First, we explain how Appium recognizes UI elements.

Similar to how Flutter has a SemanticsTree, Appium has a page source. The
page source is a data structure that represents the Ul elements on the
screen in a tree structure. When creating an E2E test in Appium, it is
necessary to locate the desired UI element in this page source and verify UI
element information. One method for verifying is with the Appium Inspector
(https://inspector.appiumpro.com/). Using Appium Inspector allows you to
identify where each UI element is located on an app screen, as well as its
attribute values, and more.

In the Appium Inspector's screen (shown below), the left side shows the
location of the 'One' button on the app screen, the middle indicates the
location of the 'One' button in the page source, and the right side displays
the attribute values associated with the 'One’ button.

1:56 O

[App Source B g & ? Selected Element
DropdownButton, MenuBu =
id="">
¢ 2 0 Q0 E
D Preview <> Code * <android viewView resource-
id=""s
Find By Selector

DropDownButten with default:
<android.viewView content-

desc="Preview Tab 1 of accessibility id One is selected,

£ RSOUORSEETS Nfandroid.widget. Button[@content-d
xpath

<android.view.View content- esc="0ne is selected.”]

desc="Code Tab 2 of

2" resource-fa=""> Attribute Value

¥ <android.viewView resource-
00000000-0000-0273-0000-0085

id=""> elementld
00000003
~ <android.view.View resource-
index 1
id="">
¥ <android.viewView resource- package io.github.x_wei flutter_cataleg
jd=""s
class android widget, Button

<android .view.View content-

desc="DropDownButton text

i * resource- I
with default:* resource content-desc One is selected,

fd="">

resource-id
<android.widget.Button confent-

desc="0ne is checkable false

selected.” resource-id="">
checked false

There are two main patterns of cases where Appium fails to recognize UI
elements in a Flutter app.

2-1. Multiple Widgets are Recognized as a Single Block of UI
Element

The first issue is "multiple widgets are recognized as a single block of
elements, rather than as separate elements". Let's explain this in detail using
the following Flutter app screen.

On this screen, we are using a ListTile, which has the Text widget ([1]) and the
DropdownButton widget ([2]) as its 'title' and 'trailing' properties, respectively.
Moreover, the Text widget ([1]) has "DropDownButton with default:" as its

text, and the DropdownButton widget ([2]) has the options "One", "Two",
"Three", and "Four".

749 O

DropdownButton, MenuBu =

D Preview <>
DropDownButton with default: One =
Text widget ([1]) DropdownButton

widget ([2])

Now, using the Appium Inspector, let's check how each widget is recognized
as a Ul element. The results are illustrated in the diagram below.

527 O
[App Source B J &
DropdownButton, MenuBu =
g=r
D Preview <) Code ~ <android.viewView resource-
fd=""=
» <android.viewView resource-
id="">
b <android.viewView resource-
g="">
¥ <andraid.viewView resource-
ia="*>
<android viewView content-
desc="Preview Tab 1 of
2" resource-id="">
<android.view.View content-
desc="Code Tab 2 of
2" resource-id="">
v <android.view.\View resource-
ig="">
* <androidview.View resource-
id="">

class

et

content-dese

resource-id

checkable

checked

clickable

enablad

focusable

focused

long=clickable

password

scrollable

selected

¢ Selected Element

android widget.Button

DropDownButton with default: One

false

false

true

true

true

false

false

false

false

false

<android.widget.Button con

desc="DropD wi

| bounds

[0,336)[1080,1794]

default: One" resource-jd="

displayed

true

Looking at the results, the area of the Text widget and the DropdownButton
widget seems to be recognized as one single block, and furthermore, the size
is recognized as a much larger area than it actually is. This causes the following

problems during test automation.

1.1t is not possible to individually retrieve the display text values of the Text

widget and the DropdownButton widget.

2.The position of the UI element differs significantly from the actual position
of the DropdownButton, making it impossible to tap the DropdownButton
using a click command. Appium's click command clicks the center position
of the target UI element, so if the position of the UI element differs from
the actual position, the tap will fail. (From the value of the bounds
attribute, the top-left coordinate of this Ul element is recognized as (X, y) =
(0, 336), and its size as 1080*1458. However, since the screen size is
1080*1794, it is clear that the recognized position of this Ul element is

significantly different from its actual position.)

As far as we've checked, similar issues have occurred in at least the following
situations:

e When using a Container widget in the children property of a Stack widget.
e When using TextField, Text, HighlightView, Center widgets, etc., in the
children property of a Column widget.

2-2. UI Elements Not Recognized at All

The second issue is "UI elements corresponding to screen items are not
recognized at all". This time, we will explain in detail using the following Flutter
App screen. Using the Appium Inspector, let's examine how the switch
element ([1]) located at the bottom right of the screen is recognized.

Tile 0

Tile 1
Tile 2
Tile 3
Tile 4
Tile 5
Tile 6

Tile 7
Switch ([1]) element

Device Preview

The recognition results are as follows.

B App Source

fd="">

& Selected Element

¢ ¢ O 0 H

Tile 0 <android view.View content-
desc="Tile 3" resource- Find By Selector
Tile 1 ="
<android view.View content- f::r:;c::laﬁ:“:fﬁliiez':':'ﬁ::;“o
Tile 2) - u roid.widget. LinearLayou r
desc="Tile 4" resource- o oid widget.FrameLayoutfandroid wid
ig=""= get. FrameLayoutfandroid.viewView
Tile 3 ‘ ‘
<android view.View content-
i desc="Tile 5" resource- Using XPath locators is not recommended and
id=""> o Gan lead to fragile tests. Ask your development
L n FIoTeT
o ‘ team to provide unique accessibility locators
. <android view.View content- .
Tile 5 instead!
desc="Tile 6" resource-
. ig=""»
Tile & Attribute Value
<android view.View content-
i desc="Tile 7" resource- 00000000-0000-0283-0000-0000
Tile 7 elementld
id=""s 00000003
Tile 8 This switch element is <android viewView content- index 0
not recognized by Appium, desc="Tile 8" resource-
) g com. nple
Tile9 fd="">
<andraid.view.View content- class android.view.View
desc="Tile 9" resource-
text
g=""=
resource=id

It's a bit hard to see, but the switch at the bottom right of the screen is not
recognized as a Ul element at all. If this happens, it becomes impossible to tap
on the element using a click command.

—— 3. Solutions

In the previous chapter, we described two patterns where UI elements in
Flutter apps are not properly recognized. In this chapter, we will introduce
solutions to these issues.

3-1. Upgrade Flutter to version 3.3.0 or later

The first step is to upgrade Flutter to version 3.3.0 or later, as newer versions
of Flutter have greatly improved issues with UI element recognition.
According to https://github.com/flutter/flutter/issues/18060#issuecomment-
1251740879, the enhancements we discuss in the following sections appear
to be effective for iOS devices running Flutter 3.0.0 or later, and even for other
devices using versions prior to Flutter 3.0.0. However, based on this guide,
which has been thoroughly validated, we recommend Flutter 3.3.0 or above.

3-2. Review the Implementation of UI Elements in the App

Next, detailed solutions regarding the two issues identified in the previous
chapter are introduced. As a solution, it's essential to review the
implementation of UI elements that aren't properly recognized.

3-2-1. Isolate Widgets as SemanticsNode for Desired Testing Units

First, as a solution to the issue in 2-1 where "multiple widgets are recognized
as a single block of UI element", we explain how to isolate widgets as
SemanticsNode for the desired testing units. The screen from earlier is
presented again, where the Text widget and DropdownButton widget areas
were recognized as a single block of UI element.

7:49 O

DropdownButton, MenuBu =

O Preview <>

DropDownButton with default One -

This screen is implemented using a combination of a ListTile widget, a Text
widget, and a DropdownButton widget.

@override
build(context) {
return
children: =
{
title: 'DropDownButton with default:'}),
trailing: < >

value: binlSelectedVal,
onChanged: (7 newValue) {
if (newvalue !=) {
setState(() => _btnlSelectedVal = newValue);

«_dropDownMenuIltems,

wnButtor

Isolate the Text widget and DropdownButton widget as SemanticsNode. To do
this, wrap each widget with a Semantics widget with the container property set
to true.

@override
build(context) {
urn
children: <
|

title:
container:
child: {'DropDownButton with default:')

trailing:
container:
child: =

value: _btnlSelectedVal,
onChanged: | 7 newValue) {
if (newValue
setState(()

L)

[App Source g &4 ¢ Selected Element
DropdownButton, MenuBu =

b <candroid.viewView reso class android.view View

0 Preview <> Code id=

text

-
|propDownButton with default: | one ~ content-desc DropDownButton with default:
resource-id
checkable falze
<android.view.View content- checked false
desc="Code Tab 2 of clickable fitsn
2" resource-id="">
enabled true
¥ <android.view View resource-
ig=""> focusable true
¥ <android.viewView resource-
focused false

id="">

~ <android.viewView resource- long-clickable false

fa="*> password false
<android viewView content-
serollable false
desc="DropDownButten
with default:* resource- selected false
id="">
bounds [42,385][825,434]

<android widget.Button content-

Similarly, the Drop-down Button widget has also

independent UI element.

1054 O
[E App Source B J L

DropdownButton, MenuBu

¥ <android.view.View resource-
O Preview '3 id="">

= <android.view.View resource-

DropDownButton with default:

fd="">
<android view View content-
desc="Preview Tab 1 of
2" resource-id="">
<android view.View content-
desc="Code Tab 2 of
2" resource-id="">
> <android view.View resource-
id="">
* <android view.\View resource-
fa="">
¥ =android view\View resource=
id="">
<android view.View content-
desc="DropDownButton
with default:" resource-

id="">

<android widget.Button content-
desc="0ne" resource-ig="">

been recognized as

<) selected Element

class

android widgat_Button

text

content-desc One
resource-id

checkable false
checked false
clickable true
enablad true
focusable true
focused false
long-clickable false
password false
scrollable false
selected false
bounds (867,347][1038,473)
displayed true

an

Since each widget was recognized as an independent UI element, the
position of each UI element has been aligned with reality. Therefore, the
DropdownButton widget can now be operated by Appium's click command.
Moreover, from an accessibility standpoint, this enhancement ensures
more precise button location detection in Android's 'TalkBack' and iOS's

'VoiceOver'.

In this instance, we isolated the Text widget and the DropdownButton
widget as individual Ul elements. However, there's no issue with isolating

the ListTile widget as individual UI element as well.

In such cases, it is better to use widgets like GestureDetector

(https://api.flutter.dev/flutter/widgets/GestureDetector-class.html) to

modify the ListTile widget to detect tap events.

10

3-2-2. Properly Setting the Z-order of a Stack Widget

Next, as a solution to the issue in 2-2 where "UI Elements Not Recognized at
All", we explain how to properly set the Z-order of a Stack widget. The screen
from earlier is presented again, where the switch element located at the
bottom right corner was not recognized.

Tile 0

Tile 1

Tile 2

Tile 3

Tile 4

Tile 5

Tile &

Device Preview

This screen is implemented using a Stack widget. It may look complicated,
but essentially, it's just using a Stack widget and stacking the Positioned
widget and AnimatedPositioned widget in sequence.

11

return
children:
(
key:
bottom: @,
right: @,
left: 8,
child:
slivers: widget.tools,
maxMenuHeight: constraints.maxHeight * 8.5,
scaftfoldkey: scaffoldKey,
onMenuVisibleChanged: (isVisible) => setState(() {
_isToolPanelPopOverOpen = isVisible;

{
('preview'),
duration: [imilliseconds: 20@),
left: @,
right: rightPanelOffset,
top: @,
bottom: bottomPanelOffset,
child: (
borderRadius: borderRadius,
child: B
builder: _buildPreview
R IED

In a Stack widget, the widgets positioned further behind in the children array
are given a higher Z-order, similar to CSS. This means they'll appear closer to
the front of the screen. If they are not arranged in the correct order, Appium
may not be able to recognize it as a UI element, even if they appear fine on
screen. Therefore, swap the positions of the Positioned widget and the
AnimatedPositioned widget.

12

Tile 2

Tile 3

Tile 4

Tile 5

Tile 6

Tile 7

Tile 8

Tile @

Device Preview

4

return (
children: <

key:

duration: (milliseconds: 208),

left: @,
right: rightPanelOffset,
top: @,
bottom: bottomPanelOffset,
child: {
borderRadius: borderRadius,
child:
builder: _buildPreview

key:

bottom: @,

right: @,

left: @,

child: DevicePreviewSmalllLa
slivers: widget.tools,

maxMenuHeight: constraints.maxHeight * 8.5,

scaffoldKey: scaffoldKey,
onMenuvVisibleChanged: (isVisible

[3) App Source g &L

<android.view

desc="Tile 7" res

<android.view

="Tile 8" s

<android.widget.Switch resource

==

=> setState(() {
_isToolPanelPopOverOpen = isVisible;

< Selected Element

package

class

text

resource-id

checkable

checked

clickable

anabled

focusable

focused

long-clickable

password

serollable

selected

bounds

displayed

com.example. example

android . widget.Switch

true

false

true

true

true

false

false

false

false

false

(883,1658][1038,1784]

true

13

Thus, by appropriately re-setting the Z-order between widgets, previously
unrecognizable elements can be recognized.

14

—— 4. Implementation Tutorial

This chapter outlines the specific steps to make a Flutter app E2E testable.

4-1. Upgrade Flutter

First, upgrade the version of Flutter you are using to version 3.3.0 or later.

4-2. List UI Elements that Aren't Recognized Properly

Next, launch the Flutter app that is the subject of the test using either Appium
Inspector, uiautomatorviewer, or MagicPod. Open the screens that will be
used in the E2E test one by one. Check each UI element used in the test if it's
correctly recognized. List the elements that are not recognized correctly.
Appium Inspector is recommended. Since the way elements are recognized is
basically the same for both iOS and Android, it's sufficient to do the listing
process on just one platform.

For specific verification procedures, please refer to Chapter 2: "Issues with
E2E Test Automation for Flutter Apps.".

e When using Appium Inspector, please refer to https://support.magic-
pod.com/hc/en-us/articles/4408926683033#sec3_2 for setup and usage
instructions.

e When using uiautomatorviewer, please refer to https://support.magic-
pod.com/hc/en-us/articles/4408926683033#sec3_1 for usage
instructions. In this case, it's necessary to use Android application.

e When using MagicPod, there might be issues on the MagicPod side
causing target Ul elements to be obscured by other larger Ul elements.
Following the procedures in https://support.magic-pod.com/hc/en-
us/articles/4409255879961 If you can find the element by hiding the
larger elements on the top, then there is no issue with the Flutter app.

This task can be carried out by non-engineers with test automation experience.

15

4-3. App Code Correction

Once completed with the listing process, review the app code for each
element that has an issue. Refer to section 3-2 "Review the Implementation

of UI Elements in the App", and correct the app code for each element so
that the element is recognized properly.

16

—— 5. Impact on Accessibility Information

In section 3-2-1, "Isolate Widgets as SemanticsNode for Desired Testing
Units," elements that are isolated as SemanticsNode will be read aloud by
the screen reader. In most cases, the Ul elements that you want to
manipulate and retrieve in E2E automated testing are the same elements
you would want the screen reader to vocalize. Normally, this shouldn't cause
any problems. However, when reviewing the implementation of UI elements,
please be mindful of the impact on accessibility, such as regarding screen
reader output.

17

Flutter App Implementation Guidelines
for E2E Testing

Version: July 31, 2023

MagicPod Inc.

T103-0015

4F The Shore Nihonbashi Kayabacho,

1-2 Nihonbashi Hakozaki-cho, Chuo-ku, Tokyo

https://magicpod.com/en/contact/

